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Abstract. The mechanism of spin orientfdion under the interband Nnnelling hansport of c a n "  
due U) the longitudinal c m n t  has been considered. The spin-dependent interband Nnnelling 
probability has been calculated for Kane and Dirac-like models. For lead chalcogenides and 
InAdAlGaSbIMb heterostn~ctures the degree of spin orientation can be greater than 10% under 
weak current-induced longitudinal anisotropy of the dk@ibotion function. 

1. Introduction 

The invariant o[p x n] (where p is the two-dimensional momentum and n is the normal 
to the plane of a heterostructure) which occurs due to the spin-orbit interaction with the 
transverse localized potential, describes the connection of the spin orientation with the lateral 
motion. This invariant appears under the consideration of electron spin relaxation on a non- 
ideal surface [l] and the spin-splitting of the 2~ electron-energy spectrum [2-4]. In the 
case. of the current along this structure, the spin orientation of 2D electrons arises [3,5,6]. 
Investigations of spin-orientation effects in lateral electron transport were carried out for 
ferromagnetic-metal (or semiconductor) tunnelling strucmes U, 81. Recently, double-banier 
heterostructures with magnetic semiconductor baniers have been considered [9]. The spin 
orientation is obtained due to self-magnetic or induced momentum of magnetic materials. 

In this paper the mechanism of spin orientation under the tunnelling transport of the 
electrons is discussed for heavily doped semiconductor heterostructures due to the lateral 
current. In this case the spin orientation is connected with above-mentioned spin-orbit 
term. Such a situation can be realized using narrow-gap semiconductors based on lead 
chalcogenides and A ~ B s  materials [lo-121. These heterostructures are extensively studied 
as high-frequency diodes with negative differential resistance (NDR). The spin orientation 
is caused by the dependence of the particle tunnelling probability upon the spin quantum 
number. This mechanism was mentioned in [lo], but a detailed consideration was not 
carried out. 

2. Theoretical model 

We consider singlebanier heterostructures with heavily doped narrow-gap layers (schematic 
diagrams are shown in figure 1). The first structure (figure I@)) is formed by two type- 
I heterojunctions and can be realized using lead chalcogenides or A ~ B s  materials; the 
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Figure 1. Schematic diagrams of the svUcNres under consideration 

second structure contains type-D: heterojunctions (the InAdAlGaSblGaSb smcture is a 
diode of this type). The left-side narrow-gap layer (layer I) is heavily doped by donors, 
the right side by acceptors. Electrons can tunnel from the conduction band of layer I 
to the valence band of layer IIl (see figures I(a) and I@)), if a positive external bias 
is applied to the structure. The electron states in the conduction band of the n+ layer 
can be characterized by a quantum number U = f l ,  which corresponds to various spin 
orientations. Due to the spin-orbit interaction the tunnelling probability T depends upon 
this quantum number. However, accounting for the symmetry of the system to time 
inversion, T"(kl1) = T-"(-kl) can be obtained (where kll is the lateral wavevector). Then 
T*(kll)-T*(klj) = -(T"(-kll) - T u ( - k ~ ) ) .  For this reason the overall spin-polarization 
density of flux is equal to zero, if the electron distribution function in the n+ layer has only 
a symmetrical part with respect to kl. In this case the occupation probability of the electrons 
does not depend upon the sign of kll and the contributions of electrons with opposite values of 
kll to this value are opposite. Applying the external bias along layer I (direction x) ,  the spin- 
polarized electrons can be obtained in this layer due to the existence of an anti-symmetric 
part in the electron distribution function which is proportional to U, = fi-'(aE/ak,) (where 
E is the energy and k, is the wavevector component along the lateral current). In this 
situation the spin-dependent tunnelling current creates the following density of flux of spin- 
oriented electrons: 

In this expression y is the direction normal to the interfaces, uly is the velocity 
component normal to the interfaces, AV is the total voltage across the barrier layer, k 
is the wavevector, fIb are the distribution functions for electrons with different values of 
U in front of the barrier layer, and fi is the distribution function in the valence band. We 
have neglected the reverse tunnelling current. This is possible for the low-temperature case 
and for a positive external bias. For the sake of simplicity, we do not take into account 
the spin orientation of holes. This is possible due to the rapid relaxation of the hole spin 
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polarization in AsB5 stluchues. This relaxation is caused by the transitions between the 
light-hole and heavy-hole subbands. For lead chalcogenides-type structures the influence 
of the hole spin polarization on the value of 6 J can be neglected, if the conduction band 
edge of the n+ layer is higher than the hole Fermi level in the p+ layer. In this situation 
all states in the p+ layer, which are higher than the n+ layer conduction band edge, &e 
empty and spin-polarized electrons cannot tunnel from the p+ layer to the conduction band 
of the n+ layer. Spin polarization in the p+ layer in lead chalcogenides-type structures can 
becalculated in a similar way as in the n+ layer. 

In the time relaxation approximation, the antisymmetric part of the electron distribution 
function in ,the n+ layer can be expressed as 

3 7 -  af*O 

f, - - e F u , r ( E * " ) A  = eFu,r(E?)S(E - E?). a E  

Here F is the electric field parallel to the lateral current, E? are Fermi levels for particles 
with different values of b, e is the absolute value of the electron charge, r(E,f")  is the 
relaxation time, and f? = @(E? - E) at zero temperature. The difference between the 
symmetric parts of the electron distribution functions Sf = f; - fi;" can be evaluated in 
the following way: 

Xf =- 6 ( E  - EF).  
&?@E) 

(3) 

Here Sn(0) is the concentration of spin-oriented electrons in front of the barrier, EF % 

E: % EF" (we have supposed that [E;  - E;"[ << E?). Using (2), (3) and the previous 
assumptions we can rewrite (1) in the following form: 

The first term in (4) corresponds to the spin-polarization flux due to the difference between 
the tunnelling probabilities Ti", and the second term corresponds to the spin-polarization 
flux due to the direct tunnelling of spin-oriented electrons to the valence band of the p+ 
layer, T w Tu % Tu. We have assumed that ITu - T-1 << T*". In deriving (4) we 
have taken into account that f? = f: + f,". Only linear terms with respect to f,'", 
6f are considered for the case of weak longitudinal anisotropy of the distribution function 
and weak spin-polarization degree. 

The relaxation of the spin orientation in the quasi-neutral region of the emitter layer is 
described by the following equation: 

where Sn is the concentration of the spin-oriented elect", r, is the spin-relaxation time, 
and D is the diffusion coefficient. We neglect the drift current normal to the interfaces 
in the quasi-neutral region, because the corresponding electric field is negligible in this 
region. We also use the fact that the value of Sn is independent of x. This is possible if the 
lateral current and electric field are uniform and constant, and the bias along the structure is 
negligible. The value of D is approximately independent of the electric field in the quasi- 
neutral region for small values of F, when this field produces only weak anisotropy of the 
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distribution function. (This case is considered in the present work.) If the spin relaxation 
in the space charge region is negligible, then we have the following boundary condition at 
y = o  

where y = 0 is considered to coincide with the boundary of the space charge region. This 
is reasonable if the thickness of the space charge region is much smaller than that of the 
quasi-neutral region. 

3. Spin-dependent trmneUing probability 

The tunnelling probability can be calculated using a Dirac-like model for lead chalcogenides 
structures, which was described in detail in [lo]. For A3B5 structures we employ the Kane 
model (see, for example, [12]). In [lo, 121 the interband tunnelling probability and the 
current-voltage characteristics of the interband tunnelling structures were obtained, but 
the dependence of T upon the spin was not considered. Numerical calculations of the 
tunnelling probability can be carried out using the transfer matrix method. Suppose that the 
axis of quantization is normal to the particle wavevector. In this notation, the tunnelling 
probabilities T+ corresponding to two solutions of the SchrCdinger equation for the energy 
E and lateral wavevector kll can be Written [ 121 

where Ei and ki are the energy and wavevector in the ith layer, in which the conduction 
band edge is used as the energy reference, qi = k? - kf ,  Ej and ki satisfy the dispersion 
relation in each material, t* are the msmitted amplitudes corresponding to two waves 
with different values of U ,  and the subscripts N + 1 and 1 refer to the transmitted and 
incident waves. In (7) the amplitude of the incident envelope function, which is related 
to the conduction band basis function, is normalized to unity. The transmitted amplitudes 
ti can be determined using the respective transfer matrices Mi'. The transfer matrices for 
the Kane model calculated in 1121 and the corresponding matrices for the Dirac-lie model 
obtained here are presented in the appendix. 

Under flat-band conditions (or negligible total bias across the barrier layer with respect 
to the energy gap of this layer divided by e )  it is sufficient to take N = 2. The precise 
formula for T* in the case of diodes with a thick barrier is listed in the appendix. From 
the expressions (7), (AlXAS) for Ti it is obvious that T*(kll) = T-(-kl,) both for the 
Dirac-like and Kane models. For this reason there is no spin orientation of the electrons 
in the emitter layer I if $(E,  kll) = f p ( E ,  4 1 1 ) .  For the smcture, the band diagram of 
which is shown in figure I@), expressions for Ti (applying the Dirac-like model and the 
same assumptions as in [lo], which are given below) can be written as 

Ti = [16k1~k~~(r-~P~exp(-Zyd)l[[E1+ Eg + E& =F ZkllP/(rl 
x [E3 + Eg + EJu2 rt 2kflP/~]]-'. (8) 

Here Egl = E,3 = Eg, a = A E c / A E v ,  AEc and A E v  are the conduction and valence 
band discontinuities for both heterojunctions, P is proportional to the interband momentum 



Spin orientation in narrow-gap heterostructures 7541 

matrix element, d is the barrier thickness, y = Ikzl, the energy gaps of narrow-gap materials 
are equal to each other and are much smaller than that of the barrier layer, kll < y ,  yd >> 1. 
In this situation y (AEcAEv)'/'/P, where P = h(E,/2m)'l2, m is the effective mass 
of an electron and hole in narrow-gap materials. Note that for the symmetric structure 
(El = E3) the values of Ti coincide. If E1 # E3 some difference AT between T+ and 
T- exists. Using the linear approximation for AT we have the following expression from 
(8): 

AT = 2Tokll/ko (9) 

where 

For the non-symmetric structures the tunnelling probability also depends upon the 
quantum number 0.  This fact follows from the expressions for T* (As). Using (A5) and 
(A3) we obtain the expression (9) for AT in the linear approximation in which 

We have assumed in the derivation of (11) that the spiwrbi t  interaction can be neglected 
in layer I and is very strong in layers II and m. The first assumption is valid in accordance 
with h e ' s  dispersion law if A1/3 < E1 + Egl + AI, where Egl, AI are the energy 
gap and the split-off energy in layer I, respectively. These approximations are reasonable 
for the electrons tunnelling from the InAs conduction band to the GaSb valence band in 
the InAs/AlGaSb/GaSb structure (or in any other structure with type-II heterojunctions for 
which the ener,:y gap is of the order of the split-off energy in each layer). In equations 
( 9 H l l )  TO is the tunnelling probability for a particle with a wavevector normal to the 
interfaces. In accordance with (9Hll) AT is equal to zero if kll = 0 and increases with 
increasing TO and kll. 

Let us evaluate the wavevector ko, for example, for lead chalcogenides smctures, 
applying F'bS iimow-gap layers and a InAs/AlGaSb/GaSb diode using (10) and (11). 
Substituting in (10) the values E, = 0.28eV and m = 0.08m0, where mo is the mass 
of a free electron, and (Y = 1, we obtain !q - 106cm-' for the first situation. For the 
second diode for electrons tunnelling near the valence band of the barrier layer, suppose 
that IEl/k~l < IE3/k31 < IEz/yl. Then ?Q can be of the order of y. For this structure, 
with parameters as listed in [12], this value can be of the order of 106cm-'. The difference 
AT can exceed 10% of T, in accordance with (9), if kll << !q. 

The dependmcies of T* upon E1 are shown in figures 2 and 3 for the different values of 
AV, d = 5 x 10" cm and kll = 7 x lo5 cm-'. These curves have been calculated using the 
transfermatrix method for the InAs/AlGaSb/GaSb diode with parameters as given in [12]. 
We describe the quasi-particles employing the semiclassical approximation in the heavily 
doped layers. For this reason the tunnelling Probability depends only upon the total voltage 
AV across the Iiarrier layer. The difference AT can be about 20% of T and increases with 
increasing voltage across the AlGaSb layer. 
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Figure 2 Spin-dependent hmnnelting prob- 
ability for the WAIGaSblGaSb het- 
emsmchm for zero total voltage m o s s  the 
banier layer. Curve 1 corresponds to T'. 
curye 2 to T-, and curve 3 represents the 
dependence of ATIT against E ] .  AEc 
is the conduction band discontinuity for the 
W A l G a S b  hetemjunction. 

FigUrr 3. Spindependent tunnelling proba- 
bility for the IhfAIGaSblGaSb diode and 
AV = 0.ffiV. Curve 1 corresponds to T*, 
curye 2 to T-, and curve 3 represents the 
dependence of AT/T against El.  AEc 
i s  the conduction band discontinuity for the 
InAdAIGaSb hetemjunction. 

4. Spin orientation of electrons in the emitter 

We can solve (5) with the boundary conditions (6) to obtain the degree of spin orientation 
of the electrons Gnolno at the boundary of the emitter quasi-neuaal region and the space 
charge region: 

Snolno = GJ/nov, (12) 
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where is = and no is the donor concentration in the n+ region, which is supposed to 
he approximatdy equal to the electron concentration in the quasi-neutral region. Assuming 
thqt tlie electron F e d  levels corresponding to the different values of U are constant in the 
space eharge region and the difference between them is negligible, we derive the expression 
for the concentration of spin-oriented electrons near the banier an@) at zero temperature: 

sn(O) = SnOg(EF)/g(EFO). (13) 

Here g ( E )  is the density of stqtes, Em % E% is electron Fermi level at the boundary of 
the quasi-neuti4 and space charge regions, and EF % E,? corresponds to the interface of 
the nt layer, iF the conduction hand edge is the energy reference at each point. The latter 
value and the value of total voltage across the barrier are determined by solving Poisson's 
equation wing the corresponding dispersion laws (see [lZj). 

@e difference beiween the tunnelling probabilities coiresponding to the different values 
of U T*'' can be expressed as [T+(E,  kll. AV) - T-(E,kg, AV)]cos(o, where (o is the 
angle between the x axis and the vector p ,  and the electron wavefinction is approximately 
consid&ed as a two-component spinor near the conduction hand edge. Then, using (3). (4). 
(12) ana (13), w& obtain the kquation for Snolno: 

where 

Here vd(EF) is the electron drift velocity with energy EF and U' is the velocity that 
characterizes the leaving of spin-oriented electrons from the nt layer by means of tiinnelling 
through 'the h i e r .  The value of U* deljends upon the electron tunnelling probability and 
the density of states at ihe Fermi level in the bulk emitter layer, arid is of order UFT where. 
VF is the Fedi  velocity. 

Let us evaluate Sno/no by subs t i thg  into (14) AT and T - TO from (9Kll). Suppose 
that EFO % EF. Then 

Here m is the effective mass of an electron in the emitter ana kF % JiiG/fi. If 
~ - 1 0 6 c m , E ~ . - 0 . 1 e V ; m % 0 . 0 2 m ~ ,  ~ ~ % 2 x X O ~ c q l ~ - ~ a n d n o ~ 5 x l O ' ~ c m - ~ , t h e n  
ISno/nol - 0.1. The values used are reasonable for the InAs/AlGaSb/GaSb structure. 

Figure 4 shows the dependencies of Gno/no upon the applied voltage for the 
Ihs/AIGaSb/GaSb diode.,, We employ the same pariiineters for the structure (the values 
of energy gap ad'd split-off energy in the different layers, the conduction and valence band 
discontinuities for the heterojunctions) as in [ l l ,  121, The tunnelling probability has been 
calcdated nmerically using the transfer-matrix (AZ), the formulae (A3) and the Kank 
dispersioq law each &tenal. 'Ihe vaiue of total voltage 6mss the bani& layer AV 
and electron Fer% energ) has been determined in a simil& way as in [lZ], using the 
nunikrical solution of Poison's equation. All curvks have b&n calculated using (14) and 
(15) for various &dues of &onor concentration in the nt layer ind the harrier thickness. The 
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Figure 4. Dependencies of the de- 
gree of spin orientation upon the volt- 
age applied to he InAs/AlGaSb/GaSb 

U, = ~@cms-1. cwe I corresponds 
to no = 5 x 1017cm-3, d = 5 x lO-'cm; 
c w e  2 wrresponds to no E 2.5 x 
1017cm-3, d = 5 x lO"cm; c w e  3 
wmponds to no = 2.5 x IOL7cm-? 

s m m  fa u d ( ~ F )  = 2 x 1 0 7 ~ ~ ~ - I ,  

d = 3.5 x 10-7cm 

acceptor concentration in p+-GaSb is supposed to be 3 x 1019 ~ m - ~ .  The degree of spin- 
oriented electrons at first increases with increasing voltage applied to the structure external 
bias, reaches a peak value, and then decreases to zero when the electron Fermi level in the 
n+ layer becomes higher than the valence band edge of the p+ layer. In the latter situation 
the distribution function of electrons that can tunnel through the barrier layer has only a 
symmetric part, because fs # 0 only for E = EF at zero temperature. The value of &/no 
can exceed 10% of Sno at the maximum. The electrons can tunnel from the InAs layer to 
the conduction band of the p+-GaSb layer if the external voltage is higher than the energy 
gap of GaSb. In th is  case the spin orientation of electrons exists in the n+ layer and in the 
p+ layer. This spin polarization can be found by polarized radiation due to electron-hole 
recombination in the p+ layer. 

5. Conclusion 

The considerations given above show that there is considerable spin orientation due 
to interband tunnelling. Here we indicate some assumptions in our calculations and 
the possibility of experimentally detecting the spin orientation. In the case of a two- 
band Duac-Lie model for lead chalcogenides materials we suppose that the spectrum 
of quasi-particles is an isotropic one. This approximation is reasonable, for example, 
for the PbS/EuS/PbS structure. Computing the tunnelling probability for electrons in the 
InAs/AlGaSb/GaSb diode, the assumption of an infinite heavy hole mass was used. This 
assumption was discussed in [12]. We have also neglected the intervalley mechanism of 
the tunnelling current in all structures under consideration, and have supposed that the 
interband momentum matix element differs slightly for all materials of the structures. 
In the calculations of the degree of spin orientation, the assumptions of weak anisotropy 
of the electron distribution function and a weak degree of the elec&on spin orientation 
were applied. The consideration of the spin diffusion was carried out by employing the 
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standard expressions [5-8]. The change in degree of spin orientation with respect to the 
f i  space charge region is connected with the variation of electron concentration due to a 
corresponding variation of Fermi energy if the conduction band edge is the energy reference 
at each point. 

A more convenient method of detecting the degree of spin orientation is the investigation 
of circular polarized band-to-band luminescence or the observation of the oriented nuclear 
spins caused by their interaction with the electron spins. The first method can be used 
for n + / i / p +  structures with an intraband mechanism for the tunnelling current, when 
electrons from the n+ layer can tunnel to the conduction band of the p+ layer (or holes 
from the p+ layer can tunnel to the valence band of the nf layer) and for structures with 
the same doping type of narrow-gap materials with the interband mechanism of tunnelling 
current. In this situation the non-equilibrium electron-hole pairs are generated in narrow- 
gap materials. The degree of spin polarization of about 10% can be detected by circular 
polarized infrared radiation [I31 (the structures under consideration correspond to this 
spectrum range). In structures with various doping types of narrow-gap materials and 
interband mechanism for the tunnelling current, the orientation of nuclear spins can be 
detected (in this case the electron-hole radiative recombination cannot occur). It turns 
out that this nuclear spin polarization is considerable, because the overall electron spin 
concentration per unit area can be about lOI3 cm-* if the degree of spin orientation is about 
several per cent, no - 10'8 ~ m - ~ ,  f i  - 10-3 cm. This leads to a significant nuclear spin 
orientation [13,14]. We believe that the increase in the lateral electric field is the simplest 
way to enhance the spin polarization, because the value of Sno is proportional to the drift 
velocity ud. 

The lateral current thus causes the spin orientation of particles tunnelling through the 
barrier layer in mow-gap heterosfmctures, and this orientation can be detected using the 
above-mentioned methods. 

Appendix 

Here we present the transfer matrices and common expressions for the particle tunnelling 
probability in structures under flat-band conditions for the Kane and Dirac-like models, 
which were used in the previous calculations of the spin-dependent tunnelling probability 
and degree of electron spin orientation. We employ the matrix Hamiltonians and the basis 
wavefunctions in a similar form as in [IO, 121 for Dirac-lie and Kane models, respectively. 
The values T*O have been calculated by applying (7). where the transmitted t* and reflected 
r* amplitudes of the envelope function, corresponding to the conduction band basis function, 
are related in the following way: 

Here N is the number of considered layers and the matrices Mi' are defined in a sihilar 
way as in LIZ]: 

where the values (pj and +j are expressed by the coordinate yj and the normal component 
of the wavevector kw in the j th  layer: 

9j = (kyj -kyj+!)Yj $j = (kyj +kyj+z)fi. 
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The coefficients I$ are obtained from the boundary conditions for the envelope 
wavefunctions and can be expressed in the following way; 

k .(Ej + Eej + 2Ajj3) f ikilAjf3 
(Ej + Epi)(Ej + Egj + Aj) 

* -  YI 
J c .  - 

for the Kane model and 

for the two-band Duac-like model. In (A3) and (A4) Ej is the energy of B particle in the 
j th  layer if the conduction band edge is the energy reference, and EQ and Ai are the energy 
gap and the split-off energy in the layer j .  

Under flat-band conditions when N = 2 in (Al), the tunnelling probability T* can be 
expressed using the coefficients c; in the following way: 

where y determines the scale of the under-barrier variation of the wavefunction, and is 
defined by the dispersion law in the barrier layer for the structures under consideration. 

Accounting for the band-bending in the shucture, we use a constant approximation 
for the potential in each layer j; the number of parts into which the struchm is split is 
determined by the needed accuracy of the calculations. 
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